
Int. J. .fioliJ., SlrUClUTt.~. 1975. Vol. II. pro 1111-1124. Per(!.3mon Pre!>... Printed in (it. Rri'uin.

SHOCK AND ACCELERATION WAVES
WITH LARGE AMPLITUDES IN

LAMINATED COMPOSITE PLATES

N. A. SHAFEY

Basic Technology Inc" Pittshurgh. PA 15235. U.S.A.

and

C. T. Sus
School of Aeronautics and Astronautics. Purdue University. West Lafayette. IN 47907. U.S.A.

(Received 22 July 1974; rnoised 10 Febrllary 1975)

Abstract-Propagation of shock and acceleration waves with large amplitudes is stUdied. The geometrical
nonlinearity in the von Karman sense is included in deriving the plate equations. The dynamical conditions on
the wave fronts are derived from the three·dimensional conditions in a way consistent with the derivation of
the plate equations. General equations governing the propagation velocities are obtained. Solutions are
presented for the case where the plates are initially at rest. It is found that. in this case. the large amplitude
has a substantial effect only on the transverse shear shock wave. Finally. stability of the wave front is
discussed.

I. INTRODUCTION

Due to their particular in-plane reinforcement, laminated composite plates are usually stiff in
in-plane extension and bending, while transverse shear deformations are not accompanied by the
comparable rigidity. As a consequence, it is very likely that. if the plate is subjected to an
intensive transverse loading such as a lateral impact, farge deflections could result due to the
relatively weak shear rigidity. The wave fronts generated by such impulsive loadings could then
propagate under the influence of large amplitudes.

Work in the study of wave front propagation has been limited to the use of linear plate
theories. Moon[l] presented an analysis of wave surfaces in an equivalent homogeneous
orthotropic plate for laminated plates. The acceleration wave was investigated. Sun [2J studied
shock fronts in laminated plates by using the ray theory. The propagation velocity. the expression
for the location of the wave front, and the ray geometry were presented.

In this paper, propagation of shock and acceleration waves with large amplitudes is studied.
The geometrical nonlinearity in the von Karman sense is included in deriving the plate equations
which can also account for the transverse shear deformation. The dynamical conditions on the
wave fronts are derived from the three-dimensional conditions in a way that is consistent with the
derivation of the plate equations. Solutions are presented for the case where plates are assumed
to be initially undisturbed. In a second paper to follow the effect of initial deformations on the
propagation of these wave fronts will be discussed.

:!. SHOCK WAVE

Consider a laminated plate of fiber-reinforced composite materials. Let x, y, and z be the
Lagrangian coordinates. and the x-y plane coincide with the mid-plane of the plate with the
z-axis perpendicular to it.

In the Lagrangian description, the equation for conservation of linear momentum at the shock
front can be expressed in the form [3]

(I)

where L,j is the Lagrangian stress tensor, nj is the unit normal vector to the shock surface. po is
the initial mass density. ili is the displacement vector. Cn is the normal component of the shock
propagation velocity. and a dot indicates the time derivative. In eqn (I). the jump operator is
defined as

(2)
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where suhscripts l/ and h rder to the values of the function f immediately ahead and hehind the
wave front. respectively.

The dynamical conditions on the wave front given by equation (1) can he written in Il'rllls 'If
the Kirchhoff stress tensor Sii as

where {ijk is the Kronecker delta.
The kinematical condition of compatihility is given by

~ If I =r:'IfJ + cr ilf 1dl (/1 ax,

\ \1

I~al

where c, are components of the Lagrangian velocity of the wave front. If If I = O. eqn (4al n~du~'e,

tol ~ I

i~bl

We are concerned with shock waves propagating in the plane of the plate so that the \V;IVC

front depends only on the two spatial variables x and y. Thus. we have II' n in the anah·,is til
follow, The displacement field in the plate will be approximated by

Ii. .-~ /I (.I'•.\'. I I I ::111, Cr. y. I )

Ii. = r(x.y.l) \ ::~r,Cr.y.11

II --.- 1l'(X. -"./1

(~ i

where /I. r and II' represent the displacements in the mid-plane of the plate. and III, '.Ind 1/'

represent rotations of the cross-sections.
Substituting eqn (5) in (3) and retaining the non-linear terms that involve large slopes "11'/ ,IX

and (Jw!(Jy, we obtain the dynamical conditions consistent with the von Karman large deflection
theory of plates as

IS" Ill, ~ IS" In, ~--pnC" ([ Ii 1+ :: IJ" I)
IS" III, + IS" Ill, = --pnc,,1I1"1 + :IJJ,]I Ih)

It should be noted that in deriving eqn (01 the condition 11.- 0_- () has heen used_
Integrating eqn (0' and the first two equations multiplied bv :: lWer Ihl? thickness of plait· iI_ Ih

obtain

IN, Ill, - IN" IlIc,-- ('"Pili 1-- ('"R IJr, 1

IN" III, +IN,III,-= -c"PIi'lc"RIJ',1
!1\-1.111, + 1,1\..1,.,IIl,--c"Rrlij- c.,lIJ" J

1.'\-1..111, +[M,jll,-- c"Rli'I-- c,.lII~,1

and

wherl?

10 I · [-"/11' ;111' 1 [,'/\-1' illl"1
x 11, "-10,· jll, -l- --;:;-:- N.,. + --;-- N" II,. + - N"" -r - N,. II, .c_

0_' ",\' . x ily

IN"N,.N,,)= ['" ($".8" .•..,',,)d::
. II ,"

IXI
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f
h/2

(P, R, I) = po(1, Z, Z2) dz.
-h/2

1113

(9)

We now consider a laminated plate consisting of a finite number of layers of fiber-reinforced
materials. Each layer has a set of reduced stiffness coefficients Qlj [4]. Since we have assumed
that the nonlinearity was geometrical in nature, we will employ the usual linear stress-strain
relations given by

(10)

and

(11)

where E"", Em ... etc. are the Lagrangian strain components. Retaining only the nonlinear terms
involving awIax and awIay and using eqn (5), the Lagrangian strain components assume the
following form:

E"" = au +z at/Jx +! (aw)2
ax ax 2 ax

E = av +z at/J.+! (aw)2
•• ay ay 2 ay

2Ex = au + av +z (at/Jx + at/J.) + aw aw
• ay ax ay ax ax ay

aw
2Ex%= t/Jx + ax

Substituting eqn (12) in eqns (10) and (11) and then in (9) we obtain

(12)

au ar/Jx
ax ax

{N}={A} av +{B} ar/J. +{Nn }-ay ay
au + av at/Jx+ ar/J.
ay ax ay ax

au ar/Jx
ax ax

{M}={B} av +{D} at/J. +{Mn } (13)-ay ay
au + av at/Jx+ ar/J.
ay ax ay ax
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and

where

and
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{N'} {M'l{N} = N~, . {M} = M~.

N.,~. M.,~.,

(Aii• Bii• Dij) = fhi~ Qiil I. :::. :::~} <I: i.j -,= 1.2.'"
11-:

Aii = fh/~, Qil d: i.j =4.~
II; ~

14/

1/5)

( loa)

({N.}. {M.}l =({A}. {B})

! (illl')~
2 fix

l (ilW)~
2 ily
iJwaw
fix fI'!<'

For shock waves. the plate displacement components remain continuous across the wave
front, i.e.

[Ii;] = (l i = I-~ ( IXl

where u, = u. u~ = C. UJ = 1/1." 114 = 1/1,. u~ = w. From the kinematic condition of compatihility. l'qn
(4b1, we have

[(lUi] nl [ . ) . I ~ . 1- = - -:- lij 1 = .-", .r = -:-.
fix, ("

Using the relations given by eqn (191 together with eqns (H) and 114). we can obtain the
following relations from eqns (7) and (S):

({A *} - c,,2p{I})n~D + ({B*} - C./R{l})n~:n= c"{T}
l
UN,, n t2th\}

I{B*} _. c,,~R{lll n':,n+({D*} - C,,~I{I})n~:n= ('" {T}' 11 M" II i2tll~1

- c.[k. I-t-(k., - c.2P1 [Ii'] = () r~{)CI

where {I} is a 2 x 2 unit¥ matrix.

I{A *}. {B*\. {D*\} =: {I'll ({A}. {B}. WlJ iT!
2x2 2>:2 2x2 )X) 3"3 ),3 -"~

{T}= {f1' O}o n,
II,. n"

k, = n/A" + n..'A.... +2n.,Il,.A.!.

!~ 1/
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(24)

It now remains to find the expressions for the nonlinear terms {[Nn]}, {[Mn]} and [kn] in terms of
the jumps of the time derivatives [Ii], [v] . .. ,etc.

Consider two functions G and H. Applying the jump operator (2) on GH, we can easily show
that

(25)

Applying the above jump relation on the nonlinear terms in eqns (17) and (24), we obtain (see
Appendix)

{[Nn]} =! [wf {AHTHn}- [w] {AHTHEa}
2 Cn Cn

{[Mn]} = -2
1 [wf {BHTHn}- [w] {BHTHEa}

Cn Cn

[kn] = [w}{nV{A "'}{[~]}_-!-{EaV{A "'}{[~]}
Cn [v] Cn [v]

+[w} {n}T{B"'}{[~X]} _-!- {EaV {B"'}{[~x l} (26)
Cn ["'y] Cn ["'y]

- [wl ({NaV{THn} +{EaV{A "'HEa}-~2 [w] {Ea}T{A "'Hn}
Cn Cn

+~[~f {nV{A"'Hn})

where

(27)

The quantities {Na } and {Ea } are the values of {N} and {E}, respectively, evaluated at points
immediately ahead of the wave front. It should be noted that the expressions given by eqn (26)
are very general and can be used to study cases such as large amplitude shock wave propagation
in an initially deformed plate.

Substituting eqn (26) in eqn (20), we finally arrive at the following system of equations:

{ail H[ul ]} = {O} i,i = 1.2.3.4,5 (28)

where

AT.-cn2P AT2 BTI-C/R BT2 klO-!kl[w]
2 Cn

A!I A!2- c/p B!J B!2- c/R k20_! k2[w]
2 Crt

{ail} = BTI- c,,2R BT2 DTI-c/I DT2 k3O-!k3[W] (29)
2 Crt

B!I B!2- cn2R D!l D!2 - c,,2I k40_! k4[w]
2 Crt

k1o-k. [w] k2o- k2[w] k3O-k3[W] k40- k4 [w] k5 - C,,2p +8"
Crt Crt c" Crt
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and

where
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k, l
k, f{A.*I}{k} = I = r---,}- {n}k, ,B"

It, !

kl"

{k'l = ~~:: = H~-~n{Eu}
k. I '·

~ (J 3 Iw] n I [I-i' f
(J" = Y - ,--- Y 1 +,----r Y

- C'" _ (""

y" = {Eu}T{A *HE.. }+ {n }·r{T}T{N.. }

y," = {Eu rrfA *Hn}

y={nr"{A*HIl}.

(30a)

t30b)

LIla)

(3Ih)

In order that a nontrivial solution exists for eqn (2M) we must have

lu,,! = o.

From this equation. the propagation velocity can be determined for a shock front with a specified
normal vector, and a given amplitude [»'1 at the wave front The values of {Eu } and {Nu } which
depend on the previous disturbances in the plate before the present shock arrives have to be
predetermined also.

From the definitions of k" k4 , k," and k4" given by eqn (30), we can see that for symmetril:
laminates (B;j = 0) all these quantities vanish, and that from eqn (29) the bending modes are
decoupled from the other modes. Therefore. the bending modes are affected by the geometrical
nonlinearity only through the coupling terms B;j.

The linear solution given by [21 can be obtained by setting k; = ki' = 0 (i = 1,2,3,4) and 8" '.: O.

~. UNDISTL'RBED MEDIA

In this paper, we will consider the case of initially undisturbed laminated plates. In a second
paper to follow. the effect of initial deformations will be presented in details. For a plate that is
initially at rest. we have

{N,,}={E,,}={O}.

It is assumed that all the lamina of the plate have the same mass density. As a consequence.

R '" O.

Ry using equations (34) and (33), equation (32) can be written as

134)

:\ f, - C,,2p I\f, B* Bf, kd Ii' I I
" IA~, A~2- c,,!p B~, B~2 k2[ Ii']

Bf, Bf2 Of, _. (}I Of: k-,[I-i'! I~O l.'~)
B~, B~o O~, O~o - c}I k4 [ I-i,1

kd 1i'1 kol Ii'] k,lli'l k411i'l 2C,,2(k~ ..... C"2 p) + y Ili' f

It may appear from eqn (35) that there would be six roots for c"o, However, it can be shown
that one of the roots is trivial. and thus, the order of the expanded polynomial in c} can be
reduced hy one. This can be done as follows: Multiplying the first row by ---II, [Ii-) and the second
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row by - lIy [I~'] and adding them to the 5th row together with

we obtain from eqn (35)

1117

(36)

At,- c}p
A~,

Btl
B~,

IIxP[IV]

A t2
A2i - C,,2p

Bt2
B~2

lIyP[ Ii')

Btl
B~,

Dt,- c/l
D~,

o

Bt2
B~2

Dt2
D~2- c,,21

o

kdli']
k~[li']

qli']
k4[li']

2(k~ - c,,2pl

=0. (37)

The above equation will yield five roots only for c,,~.

It may also seem that we can increase the value of [Ii') as much as we please. However,
according to this analysis there is a limiting value for [IV] at which the root corresponding to the
transverse shear wave front becomes zero. When [Ii'] increases beyond this value the root
becomes negative, and, as a result, the value of COl becomes imaginary which is not physically
meaningful. The limiting value of [Ii'] can be obtained analytically from equation (37) as follows:
The constant term in the polynomial expansion in C,,2 of equation (37) is obtained by setting
c" = O. In the resulting determinant if we multiply the first column by -lIx [IV] and the second
column by -11,. [Ii') and add them to the 5th column, then the constant term is obtained as

. 21{A *} {B*}I
(2k 5 -[w]){B*} {D*} (38)

which is equal to zero if [IV]2 = 2k5, and negative if [wf is greater than 2k~. This would render one
of the roots of c/ negative [5]. Therefore, the following inequality must be satisfied at all
directions.

(39)

The above relation tells us that, according to the present analysis. the jump in the particle velocity
[Ii'] should be less or equal to the shear wave velocity in the linear case multiplied by square root
of 2 in order that a transverse shear wave front can propagate,

4. ACCELERATION WAVE

In this section, we will consider the second order wave front (or acceleration wave). The
analysis of higher order wave fronts follows exactly the same path as described in the previous
section.

For the acceleration wave, besides the condition given by eqn (18). we also require the
continuity of particle velocities, the derivatives of the plate displacements and the stress and
moment resultants at the wave front. Using the kinematic condition of compatibility given by eqn
(4b), we obtain in each layer

and

[
ilil,] _ Ilk r~ J- --- Iii.
ilXk COl

(40)

(41)

The dynamical condition at the wave front is now obtained directly from the equations of
motion as

[ilLij] r~l
ilXk = pn Iii. (42)



IIIX

Comhining eqns (40) and (4~) we obtain

II., III,

Again we replace in the above equatiom tht, Lagrangian stress tensor hy the Kirchoff' stress
tensor using the relation

1-+-+)

Using the approximate plate displacement field given by eqn (5) in eqns (41) and (431 and
making the appropriate integration of eqn (43) as hefore, we finally arrive at the following
relations similar to eqns (71 and (l~l:

in which

. 1 {' ii I} I {llii, I} , "flNH""--'--{A}{T} .. ·--jBHT} ,,',1,\,1:
c" r/'1 l'.. 1111,·1 .

. I {fiil} I fldl,l~'{IMI}"'-"--jB}{T} .. ·--{D}{T} .. +IIM"ii
('" r1'1 ('" lilli, I

f'q,ll-l~i; IfA,.·t'-l
d (j, I ',. 1:\ I' A. , !

where {I IV" )}. {I 1\1" I} and Ik,. I are the nonlinear terms which can he obtained by differentiating
egos (17) and (24) with the operator given by elln C!). To do that. consider again two functions (}
and H. We have

Applying the relation given by egn (~5) to the above quantity we obtain

[I:; (OHI] = G" IH I.L H"IGj-r- H"IO I+G"IHI +10" HI +'HI/G I. i4Hl

If a and H are constant across the wave front. then eqn (48) reduces to

By employing now the operator given hy eqn (49). ellns (17) and (~41. after differential ion.
can he written as

UN" n= I ii'l---_. {A HTH E,,}
(",.

(50;

1(, J= _. -!- {E. }"'{A *}{II~: )'} ... -:1_ 1E:, }l'jB*l{ II 1/1/::, II} _1'~'1 ({E,,} 'jA *}jE" f ~ {II} I IT} I'{ N" H.
C" l. ( " 1'1\. ( "



Shock and acceleration waves with large amplitudes in laminated composite plates

Introducing eqns (50) and (46) into eqn (45), we obtain the eigenvalue problem

1119

(51)

where the matrix {bll} is similar to {all} and can be derived from the general eqn (29) by putting
k, = 0 (i = 1,2,3,4), I). = 'Yo and the remaining parameters kia' 'Yo and {E.. } can be obtained from
eqns (30b), (31) and (27), respectively. The explicit expression of {bil} is given by

AT.- c.2p AT2 BTl BT2 klo

A~I A~2- c/p B~1 B!2 k20

{bll}= BTl BT2 DTI- c.2I DT2 k
3
0 (52)

B~I B!2 D!l D!2-C/I k
4

0

klo k20 k
3
0 k

4
0 kS -c.2P+'Y°

For an undisturbed medium immediately ahead of the wave front we have {N.. } ={E.. } ={O}.
Hence, from (30b) and (31b) we obtain

i = 1,2,3,4
(53)

Substituting eqn (53) in (52), we find that the resulting matrix {bil} is identical to the matrix {all}
for shocks at infinitesimal amplitudes. In other words, the geometrical nonlinearity does not
affect the propagation of the acceleration if it is not present ahead of the wave front.

5. NUMERICAL RESULTS

We consider the laminates consisting of layers of a typical graphite-epoxy composite. A
O-layer indicates that the direction of the fibers is parallel to the x-axis. For this type of
composite, a typical set of reduced stiffnesses is given by

and

{

25'062 0·25 O'O}
{Q'j} = 0·25 1·002 0·0 x 106 psi

0·0 0·0 0·5

Q44 = 0·2 X 106 psi, Qss = 0·5 X 106 psi, Q4S = 0·0,

(54)

(55)

In the following table and figures, we use the notations:
E == Extension mode
B == Bending mode
S = Transverse shear mode

TS = Twisting shear mode
TM = Twisting moment mode

(J = the angle of inclination of the normal to the wave front with the x-axis.

It should be noted that, in general, all these modes are coupled. Thus, an extension mode in
fact involves other types of motion. However, from the eigenvectors we are able to tell the
dominant deformation in each mode and identify the above designations.

The effect of the amplitude on the shock velocity is summarized in Table 1for a 0-90-laminate
with the shock propagating in the direction (J = 150

• In the table

CT = (GLT +GTT)h/2P (56)

is the velocity of the shock wave associated with the transverse shear mode. It is obvious that the
amplitude of the shock has substantial influence on the transverse shear mode while the other
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Table I. Normal velocities for different shock amplitudes for a
O-90-Jaminate at 8 = 15°

~[W]/cT E B TS m S

.0 2.6951 7.9130 2.371i 1.3522 '.0000

.2 2.6973 7.9136 2.3711 1.3527 0.9887

.4 2.7036 7.9154 2.3712 1. 3541 0.9546

.6 2.7137 7.91B4 2.3713 1. 3559 0.8963

.8 2.7273 7.92Zb 2.3714 1. 3578 0.8105

1.0 2.7439 7. q279 2.3715 1. 3596 0.6893

1.2 2.7630 7.9345 2.3716 1.3612 0.5112

1.4 2.7839 7.9422 2.3718 1.3626 0.1353

modes are little affected by the amplitude. It is of interest to note that the shock propagation
velocity for the shear mode decreases as the amplitude increases. This finding is quite different
from that of harmonic wave propagation at large amplitude as observed by Sun and Shafey[6].
In[6J, it was found that a larger amplitude resulted in a higher velocity.

The nondimensional shock velocities, cn leT, in the 0-. the 0-90-, the 0-90-0 and the
0-90-90-0 laminates are plotted versus 8 in Figs. 1-4. respectively. The strength of the shock is
taken as [W]/CT = 1. The linear solutions are also given for comparison. As explained earlier, the
bending modes are affected by the geometrical nonlinearity only through the coupling terms Bij.
Hence, the velocities for the bending modes for symmetric laminates such as the 0-, 0-90-0- and
0-90-90-0 laminates coincide with the linear solutions.

6. STABILITY OF THE WAVE FRONT

A condition for a wave front to be stable is

(57)

\
\

where Ca and Cb are the velocities of propagation of incremental wave fronts of infinitisimal
magnitude immediately ahead and behind the wave front, respectively.

~
--'" --~

8 '''l -----·L1NEAR I
7.5

L '\~
I \

~

5.0l
I

c" ~
ct= ~

\..
I

0.5

0° 30° eO 60° 90°

Fig. I. Normal velocities for the shock waves in aO-Iaminate for (wl/cT =I. CT =(GLT +GTT)h/2P.
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7.5

---- LINEAR

2.5

0.5

1121

60·

Fig. 2. Normal velocities for the shock waves in a O-90-laminate for [lvl/cT = I. CT =(GLT +Grr )h/2P.

7.5
----LINEAR

5.0

2.5

s,.----------
0.5 t:===r~~::::t;::I::=j

0
0

30
0 e. 60

0
90

0

Fig. 3. Normal velocities for the shock waves in a0-90-0-laminate for [wl/cT = I. CT = (GLT + Grr )h/2P.

For a shock wave in initially undisturbed media, the value of Co is the linear solution of eqn
(37) obtained by setting [w] = O.

To obtain the incremental shock velocity behind the wave front, we consider an incremental
shock of infinitesimal strength for which the propagation velocity satisfies eqn (28) with [w] = 0
and en being replaced by Cb. The main shock front is now considered as an initial disturbance to
the trailing incremental shock. Thus the quantities given by eqns (30) and (31) now become

° _ {{A*}}{k }- {B*} {Eb }

8n = yO={EbV{A*HEb}+{nV{TV{Nb}

where the subscript b is used relative to the main shock.

(58)

(59)
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r~~-

7.5~ ~B

\ ----LINEAR

f
r:o-~~ \.

............. . :;..--"
"',.'-.... /'"

-y, /"

, '\~ /"" I
5.0 ! .~' .. :I'

", ,

G_' ~ \ !

d;~ / \,,\

/ \~
2.5\ :I 0\ '

. // \\\

~ ~
0.5L- -,--,-s:-~--,---d

0° 30° 50° 90°eo
Fig. 4. Normal velocities for the shock waves in a o-90-9G-O-laminate for [Ii' lifT = 1. f,. =

(0,.,. + G·rr )h/2P.

Since the medium is undisturbed ahead of the main shock, we have

ihvh = raw] aWh = raw]
ax ax' ay ay

(60)

where raw/ax] is the jump in aw/ax at the main wave front. Using eqns (60) and (4b) we obtain
from eqn (27) the relation

(61)

where [w] is the strength of the main shock wave. In view of the fact that {Na} = {OJ, we can write

It can be obtained from eqn (24) that

fk" 1= - [»'] {[NW{THn}
ell

From eqns (63) and (20c) we have

{[NfHT}{n} = c/p - k5 •

(62)

(63)

(64)

By using the above relations, the equation that Ch has to satisfy assumes the following form

ATI-Ch2 p AT2 BTl B~l k1[w]
A!I A22 - Ch2 p B~l B~2 k2[»']
BTl Bf2 Dfl-Ch2/ Df2 kJ[H.-'] =0. (65)

B~, B~, D~l D!2 - Ch2
/ k4 [J.i.']

k,[wl k2[»'1 k][ l~'] k4 [»'] C/P(Cn2
- Ch2

) + 'Yf », f

It is obvious that Ch depends on the magnitude of the main shock [w] and its normal velocity
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Cn• For a particular wave front with given magnitude and velocity. there are five solutions for Cn

corresponding to five possible modes of the shock wave. However. the comparison of the
velocities must be made between a shock and the similar incremental shock wave. This can be
accomplished by comparing the eigenvectors.

For the same numerical example discussed in the previous section. it is found that

for the transverse shear mode. and

for all other modes. Thus, by the stability criterion given by (57), the transverse shear wave front
is unstable while the other shock waves are semi-stable. However. it should be noted that the
jump at the shock front in the present analysis represents in an approximate manner the sharp but
continuous rise of the particle velocity. The implication of the results of the stability analysis is that
if a shock is induced initially by an impulsive load its magnitude would decay in the course of
propagation.

Following the similar procedure, stability of the acceleration wave can also be investigated.
We obtain

5. CONCLL'SION

Equations governing the shock and acceleration waves with large amplitudes are derived for
general laminated plates. The large amplitude is incorporated in the sense of von Karman large
deflection theory of plates. Numerical results show that the velocity of the transverse shear
shock decreases as the amplitude of the shock increases. It is also found that other types of shock
waves are virtually unaffected by the large amplitude. For the acceleration wave, it is found that
the velocity does not depend on the strength of the wave front but rather on the initial
deformation of the plate.
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APPENDIX

To obtain the expressions for the nonlinear terms given in eqn (26). we proceed as follows:

Applying operator (25) on (aw/axf, (aw/ay)2 and (aw/ax) (aw/ay). and using the kinematical
condition of compatibility, eqn (19), we obtain

[( aw)2] _ 211x aw" r'l IIx
2r. J2- ---- II' +-----. \I'ax Cn ax en·

[( aw)2] _ 211,. all'" [ . 1 11/ r . 12- ---- \I' +-----. II'ay Cn ay C,,·

[( awaw)] [Ii']( illl'" iI\I''') 11.,11"['12-- =-- 11,-+11,.- -1---; II' .ax ay cn ' ay . ilx. Cn•

From eqn (17) and the above equations. we obtain

(A-I)
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or

{{N" n=[wf {A}
c"

J ':;- n,- l
aw"ll,iiX

-- [(~:] {A} \",. iJil~:" I
aw" aw"11,-+ '1,-

. (1,\' ilx

Similarly,

HM,,]) = ~~{B}{T}{n} - [w] {B}{T}{E,,}.
"'" en en

(A-21

(.'\-3)

These are the expressions given by eqn (26). To derive the expression for the nonlinear term [k" I.
we apply also the operator given by eqn (25) on Nx (ow/ax), N. (ilw/ily) '" etc. We obtain

ti\-41

Similarly, we can obtain the expressions for (owIoy) Ny and (awlox) N... Substituting the
foregoing results in eqn (24), we obtain

From eqns (13), (19) and (A-2) we have

{[N]} = - J..{A}{T}{[~]} -J..{B}{T}{[*x J}
Cn Iv] Cn ["',.J

+l14{AHTHn}- [w]{AHTHE,,}.
2 c" C"

The expression for {[M} given by eqn (26) can be derived in the same manner. In fact {I Mn
can be obtained from eqn (A-6) by replacing {A} by {B} and {B} by {D}. By substituting (A-6) in
(A-5), we obtain the third equation in eqn (26).


